Structural and Human Health Monitoring

Structural Health Monitoring

Our research group works in the general area of structural health monitoring (SHM), which is continuous or autonomous monitoring of the structural integrity of systems, structures, and materials, and any subsequent intervention.

SHM is a vital technology for reliability critical systems. There are four intended outcomes of SHM: maintain safety, improve asset readiness for service, decrease overall life cycle costs, and spur a paradigm shift in design.

Our researchers focus on using ultrasonic guided waves to detect, locate, and classify damage, as well as estimate the extent of damage. This information can be used to shift from schedule-based maintenance to condition-based maintenance and to predict remaining useful life.

SHM is extremely multidisciplinary, requiring us to innovatively synthesize solutions based on knowledge of material behavior, degradation, and failure; propagation of ultrasonic waves in waveguides; finite element analysis; sensory materials like piezoelectrics, transducers, and arrays of transducers; signal processing and data analysis; damage visualization and pattern recognition. In addition, we research and develop solutions for the allied field of nondestructive evaluation and testing.

Applications for our research are abundant and diverse, including, for example, aircraft, power generation equipment (turbines, pumps, gear boxes), energy distribution systems, pressure vessels, bridges, pavement, buildings, ships, and railroads.

Key Faculty:

Recent Research Projects:

  • Delaminations in composite materials
  • Degradation of adhesively bonded joints
  • Characterization of fatigue cracks near fastener holes
  • Development of optimal transducers
  • Real-time phased arrays for ultrasonic beam steering
  • Tomographic imaging

Current Research Thrusts:

  • Nonlinear ultrasonic guided waves for microstructure characterization in order to provide early indication of material degradation
  • The development of air-spray deposition of piezoelectric transducers for ultrasonics-based nondestructive inspection and condition monitoring in harsh environments
  • Laser ultrasonics for nondestructive testing and process control in manufacturing environments

Human Health Monitoring

Our human health monitoring research focuses on structural design and manufacturing of wearable tattoo electronics that integrate with human physiology to provide continuous monitoring of vital signals and timely delivery of treatment.

Key Faculty:



The Penn State Department of Engineering Science and Mechanics (ESM) is an internationally distinguished department that is recognized for its globally competitive excellence in engineering and scientific accomplishments, research, and educational leadership.

Our Engineering Science program is the official undergraduate honors program of the College of Engineering, attracting the University’s brightest engineering students. We also offer graduate degrees in ESM, engineering mechanics, engineering at the nano-scale, and an integrated undergraduate/graduate program.

Department of Engineering Science and Mechanics

212 Earth and Engineering Sciences Building

The Pennsylvania State University

University Park, PA 16802

Phone: 814-865-4523